47 research outputs found

    Mental Task Recognition by EEG Signals: A Novel Approach with ROC Analysis

    Get PDF
    Electroencephalogram or electroencephalography (EEG) has been widely used in medical fields and recently in cognitive science and brain-computer interface (BCI) research. To distinguish metal tasks such as reading, calculation, motor imagery, etc., it is generally to extract features of EEG signals by dimensionality reduction methods such as principle component analysis (PCA), linear determinant analysis (LDA), common spatial pattern (CSP), and so on for classifiers, for example, k-nearest neighbor method (kNN), kernel support vector machine (SVM), and artificial neural networks (ANN). In this chapter, a novel approach of feature extraction of EEG signals with receiver operating characteristic (ROC) analysis is introduced

    Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting

    Get PDF
    As a kind of efficient nonlinear function approximators, artificial neural networks (ANN) have been popularly applied to time series forecasting. The training method of ANN usually utilizes error back-propagation (BP) which is a supervised learning algorithm proposed by Rumelhart et al. in 1986; meanwhile, authors proposed to improve the robustness of the ANN for unknown time series prediction using a reinforcement learning algorithm named stochastic gradient ascent (SGA) originally proposed by Kimura and Kobayashi for control problems in 1998. We also successfully use a deep belief net (DBN) stacked by multiple restricted Boltzmann machines (RBMs) to realized time series forecasting in 2012. In this chapter, a state-of-the-art time series forecasting system that combines RBMs and multilayer perceptron (MLP) and uses SGA training algorithm is introduced. Experiment results showed the high prediction precision of the novel system not only for benchmark data but also for real phenomenon time series data

    Parameterless-Growing-SOM and Its Application to a Voice Instruction Learning System

    Get PDF
    An improved self-organizing map (SOM), parameterless-growing-SOM (PL-G-SOM), is proposed in this paper. To overcome problems existed in traditional SOM (Kohonen, 1982), kinds of structure-growing-SOMs or parameter-adjusting-SOMs have been invented and usually separately. Here, we combine the idea of growing SOMs (Bauer and Villmann, 1997; Dittenbach et al. 2000) and a parameterless SOM (Berglund and Sitte, 2006) together to be a novel SOM named PL-G-SOM to realize additional learning, optimal neighborhood preservation, and automatic tuning of parameters. The improved SOM is applied to construct a voice instruction learning system for partner robots adopting a simple reinforcement learning algorithm. User's instructions of voices are classified by the PL-G-SOM at first, then robots choose an expected action according to a stochastic policy. The policy is adjusted by the reward/punishment given by the user of the robot. A feeling map is also designed to express learning degrees of voice instructions. Learning and additional learning experiments used instructions in multiple languages including Japanese, English, Chinese, and Malaysian confirmed the effectiveness of our proposed system

    Recognition of Brain Wave Related to the Episode Memory by Deep Learning Methods

    Get PDF
    Hippocampus makes an important role of memory in the brain. In this chapter, a study of brain wave recognition using deep learning methods is introduced. The purpose of the study is to match the ripple-firings of the hippocampal activity to the episodic memories. In fact, brain spike signals of rats (300–10 kHz) were recorded and machine learning methods such as Convolutional Neural Networks (CNN), Support Vector Machine (SVM), a deep learning model VGG16, and combination models composed by CNN with SVM and VGG16 with SVM were adopted to be classifiers of the brain wave signals. Four kinds of episodic memories, that is, a male rat contacted with a female/male rat, contacted with a novel object, and an experience of restrain stress, were detected corresponding to the ripple waves of Multiple-Unit Activities (MUAs) of hippocampal CA1 neurons in male rats in the experiments. The experiment results showed the possibility of matching of ripple-like firing patterns of hippocampus to episodic memory activities of rats, and it suggests disorders of memory function may be found by the analysis of brain waves

    Nature inspired meta-heuristic algorithms for deep learning: recent progress and novel perspective

    Get PDF
    Deep learning is presently attracting extra ordinary attention from both the industry and the academia. The application of deep learning in computer vision has recently gain popularity. The optimization of deep learning models through nature inspired algorithms is a subject of debate in computer science. The application areas of the hybrid of natured inspired algorithms and deep learning architecture includes: machine vision and learning, image processing, data science, autonomous vehicles, medical image analysis, biometrics, etc. In this paper, we present recent progress on the application of nature inspired algorithms in deep learning. The survey pointed out recent development issues, strengths, weaknesses and prospects for future research. A new taxonomy is created based on natured inspired algorithms for deep learning. The trend of the publications in this domain is depicted; it shows the research area is growing but slowly. The deep learning architectures not exploit by the nature inspired algorithms for optimization are unveiled. We believed that the survey can facilitate synergy between the nature inspired algorithms and deep learning research communities. As such, massive attention can be expected in a near future
    corecore